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 Abstract 
 
Cryptography is often used in an information technology security environment to protect 
data that is sensitive, has a high value, or is vulnerable to unauthorized disclosure or 
undetected modification during transmission or while in storage.  Cryptography relies 
upon two basic components: an algorithm (or cryptographic methodology) and a 
cryptographic key.  This Recommendation discusses the generation of the keys to be 
managed and used by the approved cryptographic algorithms. 
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Recommendation for Cryptographic Key Generation 

1 Introduction 
Cryptography is often used in an information technology security environment to protect 
data that is sensitive, has a high value, or is vulnerable to unauthorized disclosure or 
undetected modification during transmission or while in storage.  Cryptography relies 
upon two basic components: an algorithm (or cryptographic methodology) and a 
cryptographic key.  The algorithm is a mathematical function, and the key is a parameter 
used by that function.  
The National Institute of Standards and Technology (NIST) has developed a wide variety 
of Federal Information Processing Standards (FIPS) and NIST Special Publications (SPs) 
to specify and approve cryptographic algorithms for Federal government use. In addition, 
guidance has been provided on the management of the cryptographic keys to be used in 
the use of these approved cryptographic algorithms. 
This Recommendation discusses the generation of the keys to be used with the approved 
cryptographic algorithms. The keys are either generated using mathematical processing 
on the output of approved Random Bit Generators and possibly other parameters, or 
generated based upon keys that are generated in this fashion.  

2 Authority 
This publication has been developed by the National Institute of Standards and 
Technology (NIST) in furtherance of its statutory responsibilities under the Federal 
Information Security Management Act (FISMA) of 2002, Public Law 107-347.  

NIST is responsible for developing standards and guidelines, including minimum 
requirements, for providing adequate information security for all agency operations and 
assets, but such standards and guidelines shall not apply to national security systems.  

This Recommendation has been prepared for use by federal agencies. It may be used by 
non-governmental organizations on a voluntary basis and is not subject to copyright. 
(Attribution would be appreciated by NIST.) 

Nothing in this document should be taken to contradict standards and guidelines made 
mandatory and binding on federal agencies by the Secretary of Commerce under statutory 
authority. Nor should these guidelines be interpreted as altering or superseding the 
existing authorities of the Secretary of Commerce, Director of the OMB, or any other 
federal official.  
Conformance testing for implementations of this Recommendation will be conducted 
within the framework of the Cryptographic Algorithm Validation Program (CAVP) and 
the Cryptographic Module Validation Program (CMVP). The requirements of this 
Recommendation are indicated by the word “shall.” Some of these requirements may be 
out-of-scope for CAVP or CMVP validation testing, and thus are the responsibility of 
entities using, implementing, installing or configuring applications that incorporate this 
Recommendation. 
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3 Definitions, Acronyms and Symbols 

3.1 Definitions 

Allowed Specified as allowed within the FIPS 140 Implementation 
Guideline [Imp Guide] 

Approved FIPS-approved and/or NIST-recommended.  

Asymmetric key A cryptographic key used with an asymmetric key (public key) 
algorithm. The key may be a private key or a public key. 

Asymmetric key 
algorithm 

A cryptographic algorithm that uses two related keys, a public 
key and a private key. The two keys have the property that 
determining the private key from the public key is 
computationally infeasible. Also known as a public key 
algorithm. 

Bit string An ordered sequence of 0 and 1 bits. 

Compromise The unauthorized disclosure, modification or use of sensitive 
data (e.g., keying material and other security-related 
information). 

Cryptographic 
algorithm 

A well-defined computational procedure that takes variable 
inputs, often including a cryptographic key, and produces an 
output. 
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Cryptographic key 
(key) 

A parameter used in conjunction with a cryptographic algorithm 
that determines its operation in such a way that an entity with 
knowledge of the key can reproduce or reverse the operation, 
while an entity without knowledge of the key cannot. Examples 
include: 

1. The transformation of plaintext data into ciphertext data, 
2. The transformation of ciphertext data into plaintext data, 
3. The computation of a digital signature from data, 
4. The verification of a digital signature, 
5. The computation of an authentication code from data,  
6. The verification of an authentication code from data and a 

received authentication code, 

7. The computation of a shared secret that is used to derive 
keying material. 

8. The derivation of additional keying material from a key-
derivation key (i.e., a pre-shared key). 

Cryptographic module The set of hardware, software, and/or firmware that implements 
security functions (including cryptographic algorithms and key 
generation) and is contained within a cryptographic boundary. 

Cryptoperiod The time span during which a specific key is authorized for use 
or in which the keys for a given system or application may 
remain in effect. 

Data integrity A property whereby data has not been altered in an 
unauthorized manner since it was created, transmitted or stored.  

Decryption The process of changing ciphertext into plaintext using a 
cryptographic algorithm and key. 

Digital signature The result of a cryptographic transformation of data that, when 
properly implemented, provides origin authentication, assurance 
of data integrity and signatory non-repudiation. 

Encryption The process of changing plaintext into ciphertext using a 
cryptographic algorithm and key. 
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Entity An individual (person), organization, device or process. Used 
interchangeably with “party”. 

Entropy The entropy of a random variable X is a mathematical measure 
of the expected amount of information provided by an 
observation of X. As such, entropy is always relative to an 
observer and his or her knowledge prior to an observation. 

Full entropy  Each bit of a bit string with full entropy is unpredictable (with a 
uniform distribution) and independent of every other bit of that 
bit string.  An n-bit string is said to have full entropy if the 
string is estimated to contain at least (1−ε)n bits of entropy, 
where ε  ≤ 2-64. 

Key See cryptographic key. 

Key agreement A key establishment procedure where the resultant keying 
material is a function of information contributed by two or more 
participants, so that no party can predetermine the value of the 
keying material independent of the other party’s contribution. 

Key-agreement 
primitive 

A DLC primitive specified in [SP 800-56A] or an RSASVE 
operation specified in [SP 800-56B]. 

Key derivation 1.  A process by which one or more keys are derived from a 
shared secret and other information during a key agreement 
transaction.  

2.  A process that derives new keying material from a key that 
is currently available. 

Key derivation key A key used as an input to a key derivation method to derive 
other keys. 

Key establishment The procedure that results in shared secret keying material 
among different parties. 

Key-generating 
module 

A cryptographic module in which a given key is generated. 

Key generation The process of generating keys for cryptography.  

Key pair A private key and its corresponding public key; a key pair is 
used with an asymmetric key (public key) algorithm. 
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Key pair owner The entity that is authorized to use the private key associated 
with a public key, whether that entity generated the key pair 
itself or a trusted party generated the key pair for the entity. 

Key replacement The replacement of one cryptographic key with another that is 
not cryptographically related. 

Key transport A key establishment procedure whereby one party (the sender) 
selects a value for the secret keying material and then securely 
distributes that value to another party (the receiver) using an 
asymmetric algorithm.  

Key update A function performed on a cryptographic key in order to 
compute a new, but related key for the same purpose. 

Key wrapping  A method of encrypting and decrypting keys and (possibly) 
associated data using a symmetric key; both confidentiality and 
integrity protection are provided.  

Module See cryptographic module. 

Non-repudiation A service that may be afforded by the appropriate application of 
a digital signature. The signature provides assurance of the 
integrity of the signed data in such a way that the signature can 
be verified by any party in possession of the claimed signatory’s 
public key. The assumption is that the claimed signatory had 
knowledge of the data that was signed and is the only entity in 
possession of the private key associated with that public key; 
thus, verification of the signature provides assurance to a 
verifier  that the data in question was knowingly signed by none 
 other than the claimed signatory. 

Origin authentication A process that provides assurance of the origin of information 
(e.g., by providing assurance of the originator’s identity). 
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Owner 1.   For an asymmetric key pair, consisting of a private key and 
a public key, the entity that is authorized to use the private 
key associated with a public key, whether that entity 
generated the key pair itself or a trusted party generated the 
key pair for the entity. 

2.   For a symmetric key (i.e., a secret key), the entity or entities 
that are authorized to share and use the key. 

Password A string of characters (letters, numbers and other symbols) that 
are used to authenticate an identity or to verify access 
authorization. A passphrase is a special case of a password that 
is a sequence of words or other text. In this document, the use 
of the term “password' includes this special case. 

Permutation An ordered (re)arrangement of the elements of a set. 

Plaintext data Intelligible data that has meaning and can be understood 
without the application of decryption. 

Pre-shared key A key that is already known by the entities needing to use it. 

Private key A cryptographic key, used with a public key cryptographic 
algorithm that is uniquely associated with an entity and is not 
made public. In an asymmetric-key (public key) cryptosystem, 
the private key is associated with a public key. Depending on 
the algorithm, the private key may be used to: 

1.   Compute the corresponding public key, 
2.   Compute a digital signature that may be verified using 

the corresponding public key, 
3.   Decrypt data that was encrypted using the corresponding 

public key, or 

4.   Compute a key-derivation key, which may then be used 
as an input to a key derivation process. 
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Public key A cryptographic key used with a public key cryptographic 
algorithm that is uniquely associated with an entity and that 
may be made public. In an asymmetric key (public key) 
cryptosystem, the public key is associated with a private key. 
The public key may be known by anyone and, depending on the 
algorithm, may be used to: 

1.   Verify a digital signature that is signed by the 
corresponding private key, 

2.   Encrypt data that can be decrypted by the corresponding 
private key, or 

3.   Compute a piece of shared data (i.e., data that is known 
only by two or more specific entities). 

Public key algorithm See asymmetric key algorithm. 

Random Bit Generator 
(RBG) 

A device or algorithm that outputs bits that appear_to be 
"statistically independent" and unbiased. 

S-BOX A function that transforms a fixed number of input bits into a 
(possibly different) fixed number of output bits. 

Secret key A single cryptographic key that is used with a secret key 
(symmetric key) cryptographic algorithm that is uniquely 
associated with one or more entities and is not made public.  

Security strength A number associated with the amount of work (that is, the 
number of basic operations of some sort) that is required to 
break a cryptographic algorithm or system. A security strength 
is often expressed in bits. If the security strength is S bits, then 
it is expected that (roughly) 2S basic operations are required to 
break it. 

Shall This term is used to indicate a requirement of a Federal 
Information processing Standard (FIPS) or a requirement that 
must be fulfilled to claim conformance to this 
Recommendation. Note that shall may be coupled with not to 
become shall not. 

Shared secret A secret value that has been computed using a key 
establishment scheme and is used as input to a key derivation 
function or extraction-then-expansion procedure. 
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Support a security 
strength 

An RBG, key or cryptographic algorithm is capable of 
providing (at a minimum) the required security strength for 
protecting data.  

Symmetric key A single cryptographic key that is used with a symmetric key 
(secret key) algorithm that is uniquely associated with one or 
more entities and is not made public. 

Symmetric key 
algorithm 

A cryptographic algorithm that uses the same secret key for its 
operation and, if applicable, for reversing the effects of the 
operation (e.g., an HMAC key for keyed hashing, or an AES 
key for encryption and decryption). 

Trusted Party A party that is trusted by its clients to generate cryptographic 
keys. 

3.2 Acronyms 

AES Advanced Encryption Standard. See [FIPS 197]. 

DLC Discrete Logarithm Cryptography 

FIPS Federal Information Processing Standard. 

HMAC Keyed Message Authentication Code. See [FIPS 180]. 

IFC Integer Factorization Cryptography 

KDF Key Derivation Function 

NIST National Institute of Standards and Technology. 

PKCS Public Key Cryptography Standard. 

RBG Random Bit Generator. 

RSA Rivest-Shamir-Adelman. 

SBOX S-BOX 

SHA-256 Secure Hash Algorithm with a 256-bit output. See [FIPS 180]. 

SP Special Publication 

TDEA Triple Data Encryption Algorithm. See [SP 800-67]. 
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3.3 Symbols 

Symbol Meaning 

⊕ Bit-wise exclusive-or. A mathematical operation that is defined as: 
 0  ⊕  0  =  0, 
 0  ⊕  1  =  1, 
 1  ⊕  0  =  1, and 
 1  ⊕  1  =  0. 

& Bit-wise AND. A mathematical operation for which the result is 1 if 
the first bit is 1 and the second bit is 1. Otherwise, the result is 0. 
That is, 
 0  &  0  =  0, 
 0  &  1  =  0, 
 1  &  0  =  0, and 
 1  &  1  =  1. 

|| Concatenation 

0xa a is represented as a hexadecimal value. 

F(x) A mathematical function with x as the input. 

H(x) A hash function with x as an input. 

T(x, k) Truncation of the bit string x to k bits.  
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4 General Discussion 
This Recommendation addresses the generation of the cryptographic keys used in 
cryptography. Key generation includes the generation of a key using the output of a 
random bit generator, the derivation of a key from another key, the derivation of a key 
from a password, and key agreement performed by two or more entities using an 
approved key-agreement scheme. All keys shall be based directly or indirectly on the 
output of an approved Random Bit Generator (RBG). For the purposes of this 
Recommendation, a directly-generated key does not include a key that is derived during a 
key agreement transaction (see [SP 800-56] and [SP 800-56B]), derived from another key 
using a key derivation function (see [SP 800-108]) or derived from a password (see [SP 
800-132]).  
Two classes of cryptographic algorithms that require cryptographic keys have been 
approved for Federal government use: asymmetric key algorithms and symmetric key 
algorithms.  
Cryptographic keys shall be generated and used by their associated cryptographic 
algorithm within FIPS 140-compliant cryptographic modules [FIPS 140]. For explanatory 
purposes, consider the module in which a key is generated to be the key-generating 
module. 
Over time, different key lengths may be required to provide adequate security for the data 
to be protected by the keys. Discussions of these key lengths are provided in [SP 800-57-
1] and in [SP 800-131]. 

5 Basic Method for Using the Output of a Random Bit Generator  
Random bit strings required for the generation of cryptographic keys shall be obtained 
from an approved Random Bit Generator (RBG); approved RBGs are specified in [SP 
800-90], [FIPS 186-2], [X9.31] and [X9.62].1 The RBG shall either provide full entropy 
output or have been instantiated at a security strength that meets or exceeds the security 
strength required to protect the data that will be protected by the key. 
The output of the approved RBG shall be used to either generate the key “directly” or 
used as a seed to generate the key according to approved criteria. An example of a key 
that can be directly generated is an AES or DSA private key; an example of a key that is 
generated from a seed is an RSA key, whereby the seed is used as a starting point to find 
a prime number that meets approved criteria (see [FIPS 186-3]). 
Key generation is performed within a key-generating module, i.e.,  a cryptographic 
module in which keys are generated. 

                                                 
1  [SP 800-90] addresses the issues associated with security strengths, whereas [FIPS 186-2], [X9.31] and 

[X9.62] do not. Note that the RBGs specified in [FIPS 186-2], [X9.31] and [X9.62] have been deprecated 
for use in [SP 800-131]. Their security strengths may be limited by either the RBG algorithm or the 
amount of entropy in the seed material. 
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5.1 The Specification 
Let K be the directly-generated key or the seed to be used to generate a key. K is a bit 
string value of the following form:  

K = U ⊕ V, (1) 

where  
• U and V are of the same length as K,   
• U and V are independent of each other, and  
• U is derived from the output of an approved Random Bit Generator (RBG) 

within the key-generating module that is generating K; the output of the RBG may 
have been transformed by an approved post-processing method (see Section 5.2) 
to obtain U.   

In order K to be used to protect data at a given security strength, the amount of entropy  
available in its generation process must be equal to or greater than the security strength). 
Therefore, the length of K in bits shall be equal to or greater than the desired security 
strength2, and at least one of its components (U or V) shall be generated to support that 
security strength (i.e., the component shall be generated using an approved RBG that 
supports the security strength3).  
The independence requirement is interpreted in the statistical sense; that is, knowing one 
of the values (U or V) yields no information that can be used to derive the other value.   
The following are examples of independent values.  

1. U is the output of an approved RBG within the key-generating module, and V is a 
constant.  (Note, that if V is a string of binary zeroes, then K = U, i.e., the output 
of an approved RBG.) 

2. U is the output of an approved RBG within the key-generating module, and V is 
obtained using an approved or allowed key derivation method with another 
entity. 

3. U is an output of an approved RBG within the key-generating module, and V is a 
key that was sent by another module. V was protected using an approved key-
wrapping algorithm or transported using an approved key transport scheme. 
Upon receipt, the protection on V is removed within the key-generating module 
that generated U before combining V with U.  

4. U is an output of an approved RBG within the key-generating module. V ′ is 
either 1) a constant, 2) a key derived during an approved key-agreement scheme 

                                                 
2  K cannot contain more entropy than its length. For example, a 128-bit key cannot contain more than 128 

bits of entropy. 
3  An approved RBG supports a given security strength if it has been instantiated with an amount of 

entropy that meets or exceeds the security strength, and the components of the RBG do not compress or 
reduce the available entropy to an amount that is less than the security strength. 
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between the key-generating module and another module, or 3) a key that was sent 
by another module using an approved key wrapping algorithm or transported 
using an approved key transport scheme, and is then received and the protection 
removed by the key-generating module that generated U.  V is produced by 
hashing V ′ using an approved hash function (i.e., V = H(V ′)) before combining V 
with U. 

5. U ′ is an output of an approved RBG within the key-generating module. V 
is either 1) a constant, 2) a key derived during an approved key-agreement 
scheme between the key-generating module and another module, or 3) a key sent 
by another module using an approved key wrapping algorithm or transported 
using an approved key transport scheme, and is then received and the protection 
removed by the key-generating module.  U is produced by hashing U ′ using an 
approved hash function (i.e., U = H(U ′)) before combining U with V. Note that 
in this case, the length of U shall be the length of the output of the hash function, 
and the security strength supported by U is the minimum of the security strength 
supported by U ′ and the length of the output of the hash function.  

5.2 Post-Processing of RBG Output 
The U component of an RBG as described in 5.1 uses the output of an approved RBG as 
an input parameter. As discussed in Section 5.1, the RBG output may be further modified 
by applying a post-processing algorithm before it is used to compute K. When post-
processing is performed, the output of the post-processing operation shall be used in 
place of any use of an RBG output in Section 5.1. 

Let M be the length of the output requested from the RBG, and let RM be the set of all bit 
strings of length M.  When the output is to be used for keys, M is typically a multiple of 
64; however, these algorithms are flexible enough to cover any output size. Let RN be the 
set of all bit strings of length N, and let F: RN →   {1,2, … , k} be a function on N-bit 
strings with integer output in the range 1 to k, where k is an arbitrary positive integer. Let 
{P1, P2, …, Pk} be a set of permutations (one-to-one functions) from RM back to RM. The 
Pj’s may be fixed, or they may be generated using a random or secret value. Examples of 
F and Pi are provided in Sections 5.2.1 and 5.2.2.  

Let r1 be randomly selected from the set RN (i.e., r1 is a random N-bit value), and let r2 be 
randomly selected from the set RM (i.e., r2 is a random M-bit value). The r1 and r2 values 
shall be outputs from an approved RBG.  The case where r1 = r2 is permissible. The post 
processor's output is the M-bit string PF(r1)(r2). The identity permutation (that is, no post-
processing at all) is also permissable. 

Although some entropy is lost during post-processing, the loss is small enough to be 
ignored for the purposes of cryptographic module validation, where all estimates of 
entropy are usually quite crude. 

5.2.1 Examples of F(r1) Used for Post-Processing 
The function F may be simple or fairly complex.  
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Let k be the number of desired permutations, and let r1 represent an N-bit output of an 
approved RBG. Two examples are provided: 

1. A very simple example of a suitable F is the following, where k is assumed to be 
an integer in the range 1 to 2N :  

F(r1) = r1 mod k. 

Note that in this example, r1 is interpreted as an integer that is represented by the 
bit string r1. 

2. A more complex example is: 

F(r1) = HMAC(key, r1) mod k , 

using an approved hash function and a fixed key in the HMAC computation. In 
this case, k could be as large as 2outlen, or as small as 1, where outlen is the length 
of the hash function output in bits. Note that using a single permutation, while 
permitted, would not require the use of HMAC to “choose” it. On the other hand k 
= 2 might make sense for some applications. 

Note that in both of these examples, the k permutations are selected with (nearly) equal 
probability, but that is not a requirement imposed by this post-processing algorithm.   

5.2.2 Examples of Pi Used for Post-Processing. 
Depending on the requirements of the application, the Pi may be very simple or quite 
complex. The security of the key-generation method depends on the Pi being 
permutations.  

1. An example of a very simple permutation Pi is a bitwise exclusive-or operation 
with a fixed mask Ai:  Pi(r2) = (r2 ⊕ Ai), where r2 and Ai are M-bit vectors.  If 
there are four such masks (i.e., k = 4), the simple function F(r1) = r1 & 0x3 might 
be used to choose among them (i.e., F(r1) is the two rightmost bits of r1). Then, 
the post-processor’s output PF(r1)(r2) would be r2 ⊕ Ar1 & 0x3. Note that in this 
example, 2 ≤ N ≤  M, where N is the length of r1 (in bits), and M is the length of r2 
(in bits). 

This should not be confused with the use of the exclusive-or in Section 6.1.1.  In 
that case, the exclusive-or operation is performed after each of the U and V values 
is calculated, including any qualified post-processing, if applicable. 

2. A more complex example would be the use of a codebook to effect a permutation. 
For example, Pi(r2) = AES(keyi, r2) could be used to effect permutations on 128-
bit RBG outputs. Similarly, Pi(r2) = TDEA(keyi, r2) could be used on 64-bit RBG 
outputs.  

Suppose that there are ten 256-bit AES keys (k = 10). Let F( ) = SHA256( ) 
mod 10. The post-processed output would be AES(keySHA256(r1) mod 10, ) . 
Note that in this case, 4 ≤ N ≤ M, where N is the length of , and M is the length 
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of  (the minimum length of  is determined by the modulus value 10, which is 
represented in binary as 4 bits). 

A similar example, but one with a much larger value for k, (e.g., k = 2128), might 
use keyi = SHA256(128-bit representation of i). Let F( ) = SHA256( ). The 
output of the post-processor would be AES(SHA256( ), ). Note that is 
this case, N = M = 128. 

3. An example of a permutation somewhere between these extremes of complexity 
is a byte-permutation ‘SBOXi’, which is applied to each byte of input, with the 
final output being the concatenation of the individually permuted bytes: 

  Pi(B1||B2|| …||BM/8) = SBOXi(B1)||SBOXi(B2)||…||SBOXi(BM/8) 

For specificity, suppose that M = 128; there are just two byte permutations to 
choose from, SBOX0 and SBOX1; and F maps 8-bit strings to their parity: F(r1) = 
0 if r1 has an even number of 1’s, and F(r1) = 1 if r1 has an odd number of 1’s.   
Note that in this case, N = 8.  

The post-processor’s output PF(r1)(r2), on the input pair r1 and r2 = B1||B2|| …||B16 would be 
SBOXparity(r1)(B1) || SBOXparity(r1)(B2) ||…|| SBOXparity(r1)(B16). To complete the example, 
suppose that the two-byte permutations are specified as: SBOX0 = the AES SBOX, and 
SBOX1 is the inverse permutation to the AES SBOX. 

6 Generation of Key Pairs for Asymmetric Key Algortihms 
Asymmetric algorithms, also known as public key algorithms, require the use of 
asymmetric key-pairs, consisting of a private key and a corresponding public key. The 
key to be used for each operation depends on the cryptographic process being performed 
(e.g., digital signature generation or key establishment). Each public/private key pair is 
associated with only one entity; this entity is known as the key pair owner. The public 
key may be known by anyone, whereas the private key must be known and used only by 
the key pair owner. Key pairs shall be generated by: 

• The key-pair owner, or 
• A Trusted Party that provides the key pair to the owner in a secure manner. The 

Trusted Party must be trusted by all parties that use the public key. 

6.1 Key Pairs for Digital Signature Schemes 
Digital signatures are generated on data to provide origin authentication, assurance of 
data integrity and signatory non-repudiation. Digital signatures are generated by a signer 
using a private key, and verified by a receiver using a public key. The generation of key 
pairs for digital signatures is addressed in [FIPS 186-3 for the DSA, RSA and ECDSA 
digital signature algorithms.  
The value of K, computed as shown in Section 5.1, is used as the private key for DSA 
and ECDSA, or as a prime generation seed when generating the RSA key pairs. 
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6.2 Key Pairs for Key Establishment 
Key establishment includes both key agreement and key transport. Key agreement is a 
method of key establishment in which the resultant keying material is a function of 
information contributed by two or more participants, so that no party can predetermine 
the value of the keying material independent of the other party’s contribution. For key-
transport, one party (the sender) selects a value for the secret keying material and then 
securely distributes that value to another party (the receiver). 
Approved methods for generating the (asymmetric) key pairs used by approved key-
establishment schemes are specified in [SP 800-56A] (for schemes that use finite-field or 
elliptic-curve cryptography) and [SP 800-56B] (for schemes that use integer-factorization 
cryptography). 
The value of K, computed as shown in Section 5.1, is used as the private key for the finite 
field or elliptic curve schemes in [SP 800-56A], or as a prime generation seed when 
generating a key pair for the integer-factorization schemes specified in [SP 800-56B]. 

6.3 Distributing the Keys 
General discussions of the distribution of asymmetric key-pairs are provided in [SP 800-
57-1].  
The private key shall be kept secret. It shall either be generated 1) within the key pair 
owner’s cryptographic module (i.e., the key pair owner’s key-generating module), or 2) 
within the cryptographic module of an entity trusted by the key pair owner not to misuse 
the private key, or reveal it to other entities (i.e., generated within the key-generating 
module of the Trusted Party) and securely transferred to the key pair owner’s 
cryptographic module. If a private key is ever output from a cryptographic module, the 
key shall be output and transferred in a form and manner that provides appropriate 
assurance4 of its confidentiality and integrity. The  protection shall provide appropriate 
assurance that only the key pair owner is able to gain knowledge of the plaintext private 
key. 
The public key of a key pair may be made public. However, it shall be distributed and 
verified in a manner than assures its integrity and association with the key-pair owner 
(e.g., using a X.509 certificate). 

7 Generation of Keys for Symmetric Key Algorithms 
Symmetric key algorithms use a single key to apply cryptographic protection to 
information (e.g., transform plaintext data into ciphertext data using an encryption 

                                                 
4 The term “provide appropriate assurance” is used to allow various methods for the input and output of 
critical security parameters to/from the different security levels that may be implemented for a 
cryptographic module (see [FIPS 140]).  
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operation) and to remove or verify the protection5. Keys used with symmetric key 
algorithms must be known by only the entities authorized to apply, remove or verify the 
protection, and are commonly known as secret keys. A secret key is often known by 
multiple entities that are said to share or own the secret key, although it is not uncommon 
for a key to be generated, owned and used by a single entity (e.g., for secure storage). A 
secret key shall be generated by: 

• One or more of the entities that will share the key, or  
• A Trusted Party that provides the key to the intended sharing entities in a secure 

manner. The Trusted Party must be trusted by all entities that will share the key. 

7.1 The “Direct Generation” of Symmetric Keys 
Symmetric keys that are to be directly generated shall be generated as specified in 
Section 5.1, where K is the generated key. These keys can be used to: 

o Encrypt and decrypt data in an appropriate mode (e.g., using AES in the CTR 
mode as specified in [FIPS 197] and SP 800-38A),  

o Generate Message Authentication Codes (e.g., using AES in the CMAC mode, as 
specified in [FIPS 197] and [SP 800-38B], or HMAC, as specified in [FIPS 198-
1], or 

o Derive additional keys using a key derivation function specified in [SP 800-108], 
where K is the pre-shared key. 

The length of the key to be generated is determined by the algorithm with which it will be 
used and the desired security strength to be provided by the key; see [SP 800-57-1] for 
discussions on key lengths and security strengths). 

7.2 Distributing the Generated Symmetric Key 
The symmetric key generated within the key-generating module often needs to be shared 
with one or more other entities that have their own cryptographic modules. The key may 
be distributed manually, or using an approved key transport or key wrapping method 
(see [SP 800-56A], [SP 800-56B] and [SP 800-38F]). See [SP 800-57-1] for further 
discussion. The requirements for outputting a key from a cryptographic module are 
discussed in [FIPS 140].  

7.3 Symmetric Keys Generated Using Key-Agreement Schemes 
When an approved key agreement scheme is available within the key-generating 
module, a symmetric key may be established with another entity with the same 
capability; this process results in a symmetric key that is shared between the two entities 
participating in the key-agreement transaction; further distribution of the symmetric key 

                                                 
5 For example, remove the protection by transforming the ciphertext data back to the original plaintext data 
using a decryption operation, or verify the protection by computing a message authentication code (MAC) 
and comparing the newly computed MAC with a received MAC) 
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is not required between the two entities. At least one of the entities must have a key-
establishment key-pair available (see Section 6.2). 
Figure 1 depicts the key-agreement process. Asymmetric key agreement keys are used 
with a key agreement primitive to generate a shared secret. The shared secret is provided 
to a key derivation method (e.g., a key derivation function or an extraction-then-
expansion (E-E) procedure) to derive keying material. [SP 800-56A] specifies approved 
key agreement methods based on DLC; [SP 800-56B] includes specifications for 
approved key agreement methods based on IFC. 
The key agreement schemes used by many widely-used internet security protocols do not 
fully comply with [SP 800-56A] and [SP 800-56B]. For example, the key derivation 
method used to derive keying material from the shared secret may be different. [SP 800-
135] discusses these protocols, conditionally approves the use the key derivation 
functions employed by those protocols, and specifies requirements for that approval. 

7.3 Symmetric Key Derivation From a Pre-shared Key 
Symmetric keys are often derived using a key derivation function (KDF) and a pre-shared 
key known as a key derivation key. The pre-shared key may have been: 

• Generated from an RBG (see Section 5.1) and distributed as specified in Section 
7.2, if required,  

• Agreed-upon using a key-agreement scheme (see [SP 800-56A] or [SP 800-56B]), 

 
Figure 1: Key-agreement Process 
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or 
• Derived using a KDF and a (different) pre-shared key as specified in [SP 800-

108].  
Approved methods are provided in [SP 800-108], which specifies approved KDFs for 
deriving keys from a pre-shared key (i.e., a key-derivation key). The KDFs are based on 
HMAC [FIPS 198] and CMAC [SP 800-38B].  
If the derived keys need to be distributed to other entities, this may be accomplished as 
discussed in Section 7.2. 

7.4 Symmetric Keys Derived From Passwords 
Keys are often generated from passwords for many applications. This is often a 
questionable practice, as the passwords usually contain very little entropy (i.e., 
randomness), and are, therefore, easily guessed. However, approved methods for 
deriving keys from passwords for storage applications are provided in [SP 800-132]. For 
these applications, users are strongly advised to use passwords with a very large amount 
of entropy, since the password is the only real protection for the data protected by the 
derived key. 

7.5 Symmetric Keys Produced by Combining Multiple Keys 
When two or more symmetric keys are generated independently using an approved 
method, then they may be combined within the key-generating module to form another 
key. The keys may be generated or established using any of the above methods. The 
following methods for combining such keys are, in effect, key derivation methods. Such 
methods include the following: 

1. Concatenating two or more keys, i.e., K = K1 || …|| Kn. If the Ki are mutually 
independent (and kept secret), then the entropy of K (i.e., the measure of 
unpredictability) is the sum of the entropies of the Ki. 

2. Exclusive-Oring two or more keys, i.e., K = K1 ⊕ … ⊕ Kn. If the Ki are mutually 
independent (and kept secret), then the entropy of K (i.e., the measure of 
unpredictability of K) is at least as large as the entropy of the Ki with the highest 
amount of entropy. Each Ki  shall not be used for any purpose other than the 
computation of K. For example, if K = K1 ⊕ K2, each Ki is 128 bits in length, K1 
has 110 bits of entropy, and K2 has 90 bits of entropy, then K is 128 bits in length, 
and has at least 110 bits of entropy. 

The Ki used in the above two methods shall be kept secret, shall be considered as key-
derivation keys, and shall not be used for any purpose other than the computation of K. 

7.6 Replacement and Update of Symmetric Keys 
A symmetric key may need to be replaced or updated, possibly because of a compromise 
of the key or the end of the key’s cryptoperiod (see [SP 800-57-1]). A replaced key and 
the key it replaces shall be mutually independent. However, an updated key (i.e., the new 
key) is usually related in some way to the old key (e.g., the new key may be obtained 
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from the old key using a key derivation function).  

Compromised keys shall only be replaced, rather than updated. If a compromised key is 
replaced, the replacement key shall be generated in a manner that provides assurance of 
its independence from the compromised key. The replacement key may be generated 
using any of the methods in Section 5 with the following restrictions: 

1. The method used shall provide assurance that there is no feasibly detectable 
relationship between the replacement key and the compromised key. To that end, 
the replacement key shall not be derived or updated using the compromised key. 

2. If the compromised key was generated from a password, the password shall be 
changed prior to the generation of the replacement key.  

If an uncompromised symmetric key is to be updated or replaced, it may be updated or 
replaced using any method in Section 7, except that if the key to be replaced was 
generated from a password, the password shall be changed prior to the generation of the 
replacement key.  
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